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Aerobic Training and Mobilization Early Post-stroke:  

Cautions and Considerations 

 

Supplementary Material Section 

 

Estimated time of cerebral autoregulation recovery by stroke type 

2.1.1 How long does cerebral autoregulation take to recover post-ischemic stroke? 

Knowledge of the temporal profile of CA recovery would help in estimating when the brain is 

protected from the blood pressure fluctuations related to exercise or mobilization. A 2010 review 

paper identified 23 observational and randomized studies in which 16 studies measured CA 20-

96 hours post stroke and 7 measured CA 7-458 days post-stroke. These studies used transcranial 

Doppler ultrasound with concomitant beat-to-beat blood pressure to characterize CA.1 Overall, 

there was deterioration of CA from the 1st to the 5th day and recovery over 3 months. CA was 

impaired even after minor stroke and occurred bilaterally in many cases. Two studies 

demonstrated some degree of progressive impairment that the authors of the review suggested 

may affect penumbral salvage.2, 3 These 2 studies demonstrated a worsening of the 

autoregulation index between the first 48 hours and 5 to 7 days post ischemic stroke. Worsening 

of CA impairment tended to occur mainly in relation to large infarctions. All 8 studies that 

measured dynamic CA showed evidence of impairment at baseline.2-9 Since this review, Ma et 

al., measured dynamic CA in 67 consecutive post ischemic stroke patients and confirmed 

previous reports of impaired CA up to at least 10 days post event compared to controls.10 Others 

have confirmed early impairment at 48 and 72 hours post stroke.11, 12 Another subsequent study 

published in 2014 by Salinet et al., conducted repeated transcranial Doppler assessments at <72 

hours, 2 weeks, and 1 and 3 months following infarction in 15 acute ischemic stroke and 22 

healthy age- and sex-matched control subjects.13  They reported significantly lower CBF velocity 

acutely post-stroke (<72 hours) relative to controls, and a reduction in CA index (worsening) that 

reached a nadir at 2 weeks post-stroke and returned to control levels within 3 months. Peterson et 

al. studied 28 patients with large-vessel ischemic stroke and demonstrated a transient CA 

impairment that was relegated to the affected side at a mean of 1.3±0.5 and 4.1±1 days, which 

normalized by 9.8±2.2 days after stroke.14  The phase shift (smaller phase shift indicates poorer 

autoregulation) for the three time points were 29.6±10.5, 23.2±19.1 and 53.2±28.2 degrees 

respectively, with the first two but not the final measure being significantly lower than that 

measured in 29 healthy controls (47.9±16.8 degrees). Collectively, these studies suggest 

impaired CA at baseline with worsening in the first 1 to 2 weeks and a return to control levels at 

approximately 3 months post ischemic stroke (Figure 1). A limitation is that there are no 

measurements conducted between 1 and 3 months.  However, one study demonstrated impaired 

CA in 71 small vessel disease patients at 48 hours post-stroke that was sustained at 6 months 

post event.15 The authors speculate that impairment is a risk factor that leads to acute lacunar 

infarction rather than a result of acute infarction.   
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2.1.2 How long does cerebral autoregulation take to recover post-intracerebral 

hemorrhagic stroke? 

Ma et al. performed serial measurements of dynamic CA in 43 patients with supratentorial ICH 

on days 1-2, 4-6, 10-12, and day 30 post stroke.16  Dynamic CA was impaired bilaterally with 

worse autoregulation measured at days 10 to 12 and recovery occurring within a month. One 

study of 53 post-ICH patients showed bilaterally disturbed dynamic CA compared to healthy 

controls at days 4 to 6.17 Ten ICH or traumatic brain injured patients demonstrated incomplete 

recovery at day 4 to 718 while others showed preservation at the acute stage and then 

deterioration in some patients on days 3 to 5 post-stroke.19, 20 Two studies of 14 and 20 patient 

participants demonstrated no disturbance in CA in ICH measured within 24 hours of stroke21, 22 

but, as demonstrated in previous studies, patients may still deteriorate beyond this period starting 

at ~1.5 days.23, 24 These studies suggest that there is little to no CA impairment at baseline, 

worsening at days 1.5 to 12, and then recovery at ~1 month post ICH (Figure). A limitation is 

that there is a dearth of measurements conducted between days 12 and 30.  

2.1.3 How long does cerebral autoregulation take to recover post-subarachnoid 

hemorrhagic stroke? 

The exact time course of CA recovery following SAH is not known. Rätsep et al. measured CA 

daily for 1 to 19 days in 52 patients; 60% demonstrated CA impairment that lasted between 1 to 

10 days (mean 3.9 days).25 Jaeger et al. demonstrated that people with more severe SAH 

exhibited initial impairment in dynamic CA which improved close to day 4.26  In a group of 

patients with mixed severity SAH, dynamic CA was preserved in the first 2 to 3 days with 

subsequent deterioration in some patients.27  In a longer term study, at 1 to 6 days following 

SAH,  4 of 12 patients had CA impairment (33.3%) and at days 7-13, 75% (9/12) had impaired 

CA.28  More recently, Calviere et al. demonstrated CA impairment at baseline (within 4 days of 

SAH aneurysm rupture) and at day 7, and then returning to normal at day 14 in a cohort of 30 

patients.29  Therefore, the available evidence suggests a recovery profile that features some 

impairment through days 1 to 4 that can gradually deteriorate in some cases and then there is 

recovery by or after day 10 to 14 post-stroke (Figure).  

 

2.3 Effect of comorbid conditions and age on cerebral autoregulation and blood brain 

barrier function  

 Cerebral autoregulation function in people with diabetes  

Diabetes is a risk factor for stroke and represent roughly 30% of all people who have sustained a 

stroke.30 31 Hyperglycemia at the time of stroke increases mortality rate to 45% for those with 

diabetes and 78% in people without diabetes compared to ~30% mortality in people with stroke 

and normal glucose levels.32 Diabetes results in extensive vascular damage and so it is not 

surprising that dynamic CA is impaired in people with type II diabetes, with or without 

cardiovascular autonomic neuropathy or microvascular complications.33, 34  We therefore 

speculate that CA impairment may be more problematic among stroke patients with comorbid 

diabetes, and more research is needed on this subgroup.  Cerebral protection during exercise may 

also be further compromised in people with stroke and diabetes as cerebral circulation is 

disturbed in response to exercise in people with diabetes alone (no stroke) when complicated by 

proliferative retinopathy.35, 36  Other factors can affect CBF velocity such as very tightly 
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controlled blood pressure which results in lower CBF in people with diabetes.37 Studies are 

needed to examine the effect of exercise on CBF in people with comorbid stroke and diabetes. In 

view of impaired CA in each condition alone, however, strategies to protect the brain during 

activity early post-stroke during CA dysfunction should be implemented and continued into the 

chronic phase of stroke.  

Effect of age, diabetes, and hypertension on blood-brain barrier recovery 

As well as the size of the infarct, the time course of recovery of BBB function in humans can be 

affected by age and comorbidities such as diabetes (hyperglycemia), and hypertension and 

should be considered when screening patients for initiating mobilization and aerobic exercise. 

Vascular aging renders the brain’s vessels more susceptible to earlier and more severe BBB 

disruption.38 People with diabetes and/or hyperglycemia can have profound BBB permeability 

levels following ischemic stroke increasing the risk of hemorrhagic transformation in patients 

treated with tPA.39 For example, people with chronic hyperglycemia (defined by HbA1c >6.5%) 

had worse outcomes following ischemic stroke and tPA in one study39 and several studies have 

suggested that a blood glucose level of ≥8.6mmol/L within the first 48 hours of stroke may be 

associated with poor outcomes.40, 41  In pre-clinical studies of stroke, the presence of diabetes 

more than doubled the time for BBB recovery and the occurrence of hemorrhagic 

transformation.42-44  Finally, hypertension triggers alterations that can lead to BBB dysfunction 

and increased permeability, suggesting that it is also an important pre-exercise screening 

criterion in the early phases post-stroke. Indeed, a link between BBB alterations, hypertension, 

and dementia can be drawn from animal models.45-49 After ischemic stroke, hypertension 

increases infarct volume and white matter injury, and is associated with brain edema and 

cognitive deficits in animal models. This process is mediated in part by BBB breakdown.45-47 

Estimated Time to Onset and Recovery of Cardiac Complications 

3.3.1.1 Time of onset and recovery of systolic dysfunction  

Banki et al. followed 173 patients with SAH over an 8 day period. Of those with LV dysfunction 

measured by ejection fraction (15%; n=25), and by regional wall-motion abnormality with 

normal LV function (13%; n=23), there was a trend toward a deterioration in cardiac function in 

the first two days after SAH, but by 8 days 66% of patients had recovered.50 Of 277 consecutive 

SAH patients with no previously known ECG or echocardiographic abnormalities, 58 patients 

(21%) had wall motion abnormalities at admission and 16 (6%) developed new wall motion 

abnormalities on day 4.51 Of the 58 patients with wall motion abnormalities on admission, only 

14 (24%) had normal LV function on day 8.  Also, 29 of 187 (16%) patients still alive and not 

discharged on day 8 had wall motion abnormalities. The authors point out that this study shows 

the dynamic nature of wall motion abnormalities.  

3.3.2.1 Time of onset and recovery of arrhythmias 

The risk of clinically significant cardiac arrhythmias is highest in the first 24 to 48 hours 

following stroke (Figure).52, 53  For example, Fernández-Menéndez et al. reported that in a group 

of 332 patients admitted for ischemic stroke, intraparenchymal hemorrhagic stroke, and transient 

ischemic attack, 29.5% had significant cardiac arrhythmias during the hospital stay.52 

Specifically, ventricular tachyarrhythmias, supraventricular tachyarrhythmias, and complex 

ventricular ectopy were present in 27.1% of patients and bradyarrhythmia in 3.9% of patients.  
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The percentage of the occurrence of arrhythmias by time of monitoring on days 1, 2, and 3 post-

stroke were 37%, 29% and 15% respectively. In a prospective study, Kalmunzer et al. reported 

that serious cardiac arrhythmias were detected in 25.1% of 501 patients in whom 92% were 

admitted with ischemic stroke.53 The time course for onset of arrhythmia was 52% occurring 

within 12 hours and 74.4% within 24 hours after admission.  Patients were monitored for a 

maximum of 72 hours.  Atrial fibrillation can be present upon admission but can also develop a 

few hours to 3 days after stroke in the acute care setting.54 55 One study reported that in a group 

of 346 consecutively admitted acute ischemic stroke patients, 34.4% were diagnosed with atrial 

fibrillation over 3 days of monitoring.54 However studies vary widely, with the prevalence of 

atrial fibrillation reported to be as low as 2.5% over 3 days of monitoring in the acute phase post-

stroke.55  

3.3.3.2 Time of onset and recovery of myocardial injury 

Kolin and Norris report that focal myocardial damage required at least 6 hours to develop after 

onset of the acute neurological event and was not observed after the second week.56  Serial 

measures of troponin I in SAH reveal that troponin levels peaked between day 1 to 3 post-stroke 

and subsequently declined over 7 days.57-60 For example, Naidech et al. measured troponin level 

in people with SAH and abnormal ECG or clinical signs or symptoms of potential cardiovascular 

dysfunction including elevated SBP (57.4%; 253 of 441 patients).57 Of the 253 people tested, 

172 (68%) had elevated troponin levels and were submitted to additional testing over 7 days. The 

peak median interval between SAH onset and peak troponin was 1.7 days (interquartile range 1.1 

to 4.8 days) with no further peak levels detected by day 3. The mean troponin level declined over 

7 days. Only 10 patients had a previous myocardial infarction. Yarlagadda et al. measured 

troponin on each of 2 study days in 300 patients post SAH.  At a mean of 4.1±3.9 days post 

SAH, 22% of patients had an elevated level, and at a mean of 9.1±4.1 days post SAH, 19% had 

an elevated level. In ischemic stroke, 6.8% (50 of 738) of consecutive patients with no acute 

coronary syndrome had elevated serum cardiac troponin levels within 3 days of stroke.61  Finally, 

in a group of 140 ischemic stroke patients, elevated troponin levels occurred in 6% (n=10) with 

the median time from stroke onset to elevation of 5.3 hours (range 1.5 to 20.4 hours), and the 

mean time to normalization was 12 hours (range 8 to 72 hours).62  

 

Pre-clinical studies 

4.2 Effects of aerobic exercise initiated at least six hours post-stroke  

A series of preclinical studies by one group of authors examined the effects of a single 30-minute 

aerobic training session introduced very early (6 hours), early (24 hours), or relatively late (3 

days) after reperfusion compared to non-exercise stroke controls.63-66  Li et al. reported that 24 

hours after exercise the very early exercise group (6 hours) had greater neuronal cell death than 

the non-exercise group.63 This negative effect was not observed when exercise was initiated at 24 

hours or 3 days. Very early exercise (6 hours) also resulted in greater infarct volumes and cell 

death than later exercise (24 hours or 3 days). Moreover, exercise initiated at 6 hours or 24 hours 

post reperfusion resulted in diminished brain oxidative metabolism (i.e. reduced energy 

production) and increased reactive oxygen species levels. Relatively late exercise (3 days) 

resulted in beneficial effects in all outcomes. Further, increased cell death after exercise initiated 

at 6 hours but not 3 days was associated with an exacerbation of hyperglycolysis.65 The finding 

that only very early exercise exacerbated hyperglycolysis may in part explain the previously 
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cited findings of exacerbated brain injury during this very early phase, given that hyperglycolysis 

is associated with apoptosis. A separate study by the same group provides another possible 

apoptotic mechanism triggered in the very early post-stroke phase, with results indicating 

increased inflammatory cytokines following exercise initiated at 6 hours, but a reduction in 

cytokines when exercise was initiated at 3 days.66  

Aerobic exercise initiated 24 to 48 hours post-stroke 

A comprehensive systematic review published in 2014 identified 33 animal model studies 

investigating early phase aerobic exercise (i.e., within 24–48 hours following the stroke).67 The 

authors of this review report that no human studies satisfied the inclusion/exclusion criteria and 

thus only animal studies were included. The results from these studies suggest that either no 

change or a reduction in lesion volume occurs with an early exercise intervention compared to 

sedentary controls.67 Eleven studies in the review reported on neuronal cell death, via markers of 

apoptosis, and found there were no adverse effects of exercise on when initiated as early as 24 

hours post event. Further, 2 studies reported reduced oxidative damage and 3 studies revealed a 

reduction in inflammation when exercise was initiated in this early phase. Also, moderate 

intensity exercise was most effective for reducing lesion volume, increasing neurogenesis and 

decreasing inflammation, while higher intensity exercise for shorter duration increased pro-

angiogenic proteins and genes in the area adjacent to the lesion and in the striatum.68-71 

Subsequent to the 2014 review, Yang et al. measured motor, sensorimotor, and balance function 

in rats after 2 weeks of treadmill exercise training initiated at 24 hours post-stroke, and compared 

function to non-exercising stroke and exercising sham stroke control groups.72  The exercising 

stroke group had greater improvement in coordinated locomotor function and spatial memory 

compared to the non-exercise stroke group, but there was no between-group difference in 

sensorimotor or vestibulomotor function.  

Possible implications for aerobic exercise prescription in humans 

Collectively, the preclinical data suggest that very early exercise (i.e. within 6 hours) may 

exacerbate brain injury, while early (i.e., ~24 hours) and relatively late training (i.e., >3 days) 

may be beneficial. Unfortunately, there is no formula that can map the rodent time frame post-

stroke to a human time frame post-stroke.  Knowledge translation between species continues to 

be a major challenge in early exercise and mobilization post-stroke. However, future pre-clinical 

studies are needed that examine the neuroprotective effect of exercise in the context of between-

species biological clocks. Livingston-Thomas et al. suggest that exercise initiated in the first few 

days of the induced stroke may affect cell survival given that it takes approximately 1 to 3 days 

for the stroke to evolve and cells to die.73-75  It is possible that compromised cells would have 

died at a later time point, independent of therapy, due to an early pruning effect whereby 

dysfunctional neurons are eliminated.73-75   Further, there is no pre-clinical literature which 

examines the interaction between stroke characteristics (severity, type) or the presence of 

comorbidities such as diabetes, and the timing of exercise initiation or the initial exercise 

prescription. This would help to identify characteristics that predispose individuals to adverse 

effects from early exercise. 
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